详解使用Nodejs内置加密模块实现对等加密与解密

网络编程 2021-07-04 14:07www.168986.cn编程入门
这篇文章主要介绍了使用Nodejs内置加密模块实现对等加密与解密,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们狼蚁网站SEO优化随着长沙网络推广来一起学习学习吧

加密与解密是保证通讯安全的一种重要手段,现在加密算法已经有很多,并且都有成熟的软件包可以使用,这就大大降低了应用开发程序员的负担,只需要使用这些第三方提供的加密解密库就可以使用了,在Node.js中其实提供了一个非常强大而且方便的加密与解密模块crypto,我们不需要使用第三方的NPM库就能实现简单的加密与解密功能,毕竟使用加密与解密的目的就是为了保证通讯的安全,而使用非官方的第三方库总是有可能存在添加的后门或者什么的,而使用Node.js自带的crypto模块就能最大程度的保证加密的安全性。

哈希值计算 crypto.Hash

哈希值计算通常是用来对数据完整性和正确性做一个校验目的使用,当我们需要确保接受的数据是跟发送的数据一毛一样的时候,就可以通过分别计算发送数据的哈希值和接收到数据的哈希值。做一个简单的比较就能判断出来,两个一样的数据得到的哈希值肯定是一样的。哈希值不能逆向计算还原成原来的数据,所以只能用来验证数据。那么在Node.js中该如何使用呢?

示例代码

const crypto = require('crypto');
const hash = crypto.createHash('sha256');

hash.update('some data to hash');
console.log(hash.digest('hex'));
// Prints:
//   6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50

上面的代码是抄录自Node.js官方演示代码,我选择了其中最简单的使用方式,这种使用方式也是我们最常使用的,那就是对一个字符串或者一组数据进行哈希值计算。crypto.Hash实现的哈希算法是使用固定的秘语Secret作为计算的算子,Node.js中还有一个与其类似的,可以改变秘语Secret的加密类crypto.Hmac。

可变哈希计算 crypto.Hmac

示例代码

const crypto = require('crypto');
const hmac = crypto.createHmac('sha256', 'a secret');

hmac.update('some data to hash');
console.log(hmac.digest('hex'));
// Prints:
//   7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e

crypto.Hmac的使用方法与crypto.Hash很相似,唯一不同点就是多了一个可以自定义的秘语Secret,使用定制的秘语Secret的一个用途就是保存密码的时候可以提高安全性,毕竟使用默认秘语Secret的哈希算法函数,只要知道使用了什么算法就能通过暴力碰撞获取到密码,使用了定制秘语Secret的哈希函数,就算是使用穷举法也几乎是不可能破解的。

对称加密与解密

对称加密与解密的意思是加密与解密双方使用同一个秘语Secret实现加解密算法运算,这种加密算法不需要什么公钥和私钥,使用起来比较方便,而且与哈希算法不同,对称加密解密是可以双向互逆运算的。

Node.js中支持许多对称加密算法,不过到底有哪些加密算法是取决于你计算机中安装的OpenSSL决定的,Node.js只是去调用了OpenSSL。这就给我们带来一个麻烦,那就是没有办法在文档中查找加密算法信息,这个之后就会知道麻烦在哪里。

对称加密使用过程

加密示例代码

 const crypto = require('crypto');

 const algorithm = 'aes-192-cbc';
 const password = 'Password used to generate key';
// Use the async `crypto.scrypt()` instead.
 const key = crypto.scryptSync(password, 'salt', 24);
// Use `crypto.randomBytes` to generate a random iv instead of the static iv
// shown here.
 const iv = Buffer.alloc(16, 0); // Initialization vector.

 const cipher = crypto.createCipheriv(algorithm, key, iv);

 let encrypted = cipher.update('some clear text data', 'utf8', 'hex');
 encrypted += cipher.final('hex');
 console.log(encrypted);
// Prints: e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa

让我们一步一步的来解释这个代码吧。

const algorithm = 'aes-192-cbc';

这一行是定义所使用的加密算法,通常有3个部分组成,中间用-连接,第一部分是加密算法名称aes,第二部分是加密长度192位,第三部分是加密认证方法(这部分可能理解有误)cbc

 const key = crypto.scryptSync(password, 'salt', 24);

这一行是生成密钥Key,注意的数字24,这个是生成的密钥Key长度,最小是8,最大没限制不过必须是8的倍数才行,密钥Key的长度是跟所用的加密算法相关的,因为文档中没有这部分信息,所以使用的时候只能不断的尝试,否则就会报错!

 const iv = Buffer.alloc(16, 0); // Initialization vector.
 const cipher = crypto.createCipheriv(algorithm, key, iv);

第6行是创建初始向量Initialization vector,这也是一个非常关键文档中没有说明的地方,IV的长度也很关键,目前只知道长度必须是8的倍数,而且长度是跟所使用的算法位数是相关的,文档中没有地方明确说明,所以使用的时候也只能是不断尝试。

密钥Key和初始向量Initialization vector这两个关键参数的长度没有在Node.js文档中写明确是非常遗憾的,导致我们使用的时候要么去查加密算法相关资料,要么只能一个一个手动尝试,非常的不方便。

 let encrypted = cipher.update('some clear text data', 'utf8', 'hex');
 encrypted += cipher.final('hex');

这两行就很简单了,就是对输入的字符串进行加密计算,update(...,'utf8', 'hex')中utf8是加密前字符串的编码格式,hex是加密后输出的编码格式。需要在加密后的字符串后面添加一个结束字符,这个工作由final('hex')完成,hex也是输出的字符编码格式。

对称解密过程

解密示例代码

const crypto = require('crypto');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// Use the async `crypto.scrypt()` instead.
const key = crypto.scryptSync(password, 'salt', 24);
// The IV is usually passed along with the ciphertext.
const iv = Buffer.alloc(16, 0); // Initialization vector.

const decipher = crypto.createDecipheriv(algorithm, key, iv);

// 上面是加密部分
// 因为加密和解密的密钥和初始向量要一致
// 所以就把加密和解密合并书写

// Encrypted using same algorithm, key and iv.
const encrypted =
  'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';
let decrypted = decipher.update(encrypted, 'hex', 'utf8');
decrypted += decipher.final('utf8');
console.log(decrypted);
// Prints: some clear text data

解密就是加密的逆过程,注意点也是一样的,就是密钥Key和初始向量Initialization vector这两个参数的长度,还有一点要要注意的是decipher.update输入的第一个参数只能是字符串,不能是Buffer类型,个人感觉用Buffer性能应该会更好点,可能以后会增加这个类型支持吧。


到此这篇关于详解使用Nodejs内置加密模块实现对等加密与解密的文章就介绍到这了,更多相关Nodejs对等加密与解密内容请搜索狼蚁SEO以前的文章或继续浏览狼蚁网站SEO优化的相关文章希望大家以后多多支持狼蚁SEO!

Copyright © 2016-2025 www.168986.cn 狼蚁网络 版权所有 Power by